

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

	CANDIDATE NAME				
* 4 5 0 4 3 6 8 6 0 4 *	CENTRE NUMBER		CANDIDATE NUMBER		
	CHEMISTRY			9701/34	
	Advanced Pract	tical Skills 2		May/June 2013	
				2 hours	
	Candidates answer on the Question Paper.				
	Additional Mate	rials: As listed in the Confidential Instructions			
	READ THESE	INSTRUCTIONS FIRST			

Write your Centre number, candidate number and name on all the work you hand in. Give details of the practical session and laboratory where appropriate, in the boxes provided. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or

Answer **all** questions.

part question.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 12 and 13.

Session Laboratory

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 12 printed pages and 4 blank pages.

1 When aqueous hydrochloric acid is mixed with aqueous sodium hydroxide, the neutralisation reaction releases heat causing a rise in the temperature of the solution.

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$

In this experiment you will mix different volumes of hydrochloric acid and sodium hydroxide but the total volume will be kept constant. For each mixture you will record the temperature rise. Since the combined volume remains the same, the temperature rise is a direct measure of the heat given out by the reaction. The maximum heat given out occurs when all the acid present is exactly neutralised by all the alkali present. By determining the volumes when this occurs you can work out the concentration of the sodium hydroxide.

FB 1 is 2.00 mol dm⁻³ hydrochloric acid, HC*l*. **FB 2** is aqueous sodium hydroxide, NaOH.

Read through the instructions carefully and prepare a table for your results in the space on page 4 before starting any practical work.

(a) Method

Experiment 1

- Support the plastic cup in the 250 cm³ beaker.
- Fill the unlabelled burette with **FB 1**.
- Run 26.00 cm³ of **FB 1** from the burette into the plastic cup.
- Record the temperature of **FB 1**, T_1 , in the space below.

 $T_1 = \dots \circ C$

For

Examiner's

Use

- Fill the burette labelled **FB 2** with **FB 2**.
- Run 4.00 cm³ of **FB 2** from the burette into the plastic cup.
- Stir the mixture thoroughly and record in your table the maximum temperature of the solution.
- Empty the plastic cup, rinse thoroughly with water and shake dry.

Experiment 2

- Support the plastic cup in the 250 cm³ beaker.
- Run 22.00 cm³ of **FB 1** from the burette into the plastic cup.
- Run 8.00 cm³ of **FB 2** from the burette into the plastic cup.
- Stir the mixture thoroughly and record in your table the maximum temperature of the solution.
- Empty the plastic cup, rinse thoroughly with water and shake dry.

Experiments 3 – 7

Repeat the experiment using 18.00, 14.00, 10.00, 6.00 and 2.00 cm³ of FB 1 respectively. Add sufficient FB 2 each time to make sure that the total volume remains 30.00 cm³.

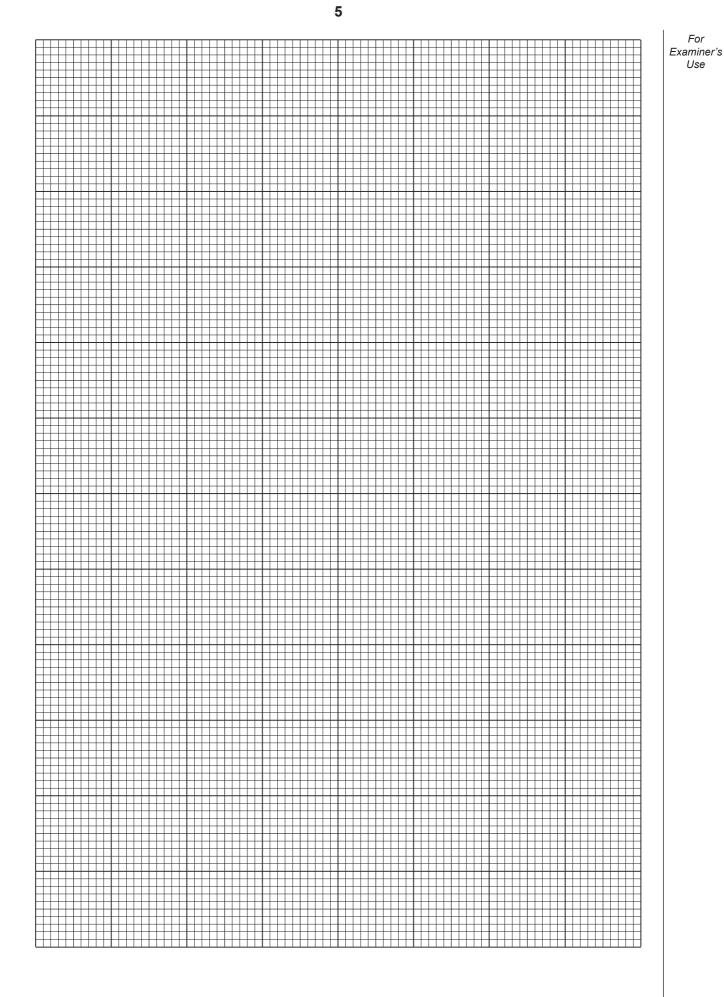
For each of your seven experiments, record in the space below

- the volume of **FB 1**,
- the volume of **FB 2**,
- the maximum temperature of the solution,
- the temperature rise, ΔT , where ΔT = maximum temperature recorded T_1 .

Ι	
II	
III	
IV	
V	
VI	

[6]

- (b) (i) On the grid opposite, plot the temperature rise, △*T*, on the *y*-axis against the volume of **FB 1** on the *x*-axis.
 The scale for △*T* should extend at least 2°C above your greatest temperature rise.
 - (ii) Draw a straight line of best fit through the points where the values of ΔT are increasing. Draw a second straight line of best fit through the points where the values of ΔT are decreasing.
 - (iii) From your graph, determine the value of the volume of **FB 1** where the two lines of best fit intersect.


volume of **FB 1** = cm³

2003 IV 2003 V [5]

Ι

Π

III

(c) Calculations

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

(i) Calculate how many moles of hydrochloric acid are contained in the volume recorded in (b)(iii).

moles of HCl = mol

(ii) Calculate how many moles of sodium hydroxide would react completely with the number of moles of hydrochloric acid in (c)(i).

moles of NaOH = mol

(iii) Calculate the concentration of **FB 2**. Remember that the combined volume of **FB 1** and **FB 2** in each experiment was 30.00 cm³.

concentration of FB 2 =	. mol dm ⁻³
	[3]

(d) A student decided to modify the experiment. The total volume of the solution was increased to 50 cm³ and temperature rises were recorded for 5, 10, 15, 20, 25, 30, 35, 40 and 45 cm³ of FB 2. The volumes were measured using a 50 cm³ measuring cylinder. Discuss how these changes would affect the accuracy with which the concentration of FB 2 could be determined.

[Total: 16]

Ι	
II	
III	

https://xtremepape.rs/

2 A second way to determine the concentration of an alkali is by volumetric titration. In this experiment you will first dilute the sample of **FB 2** that you used in **Question 1** and then titrate the diluted solution using hydrochloric acid.

7

For Examiner's Use

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$

FB 2 is aqueous sodium hydroxide, NaOH.

FB 3 is 0.200 mol dm⁻³ hydrochloric acid, HCl.

(a) Method

Dilution of FB 2

- Use the burette labelled **FB 2** to transfer 25.00 cm³ of **FB 2** into the 250 cm³ graduated (volumetric) flask, labelled **FB 4**.
- Make up the contents of the flask to the 250 cm³ mark with distilled water.
- Stopper the flask and mix the contents thoroughly. This solution **FB 4**.

Titration

- Rinse the unlabelled burette thoroughly with distilled water and then with a little **FB 3**. Fill this burette with **FB 3**.
- Use a pipette to transfer 25.0 cm³ of **FB 4** into a conical flask.
- Add to the flask a few drops of the acid-base indicator provided.
- Titrate the alkali in the flask with the acid, **FB 3**.

You should perform a rough titration. In the space below record your burette readings for this rough titration.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Record in a suitable form below all of your burette readings and the volume of FB 3 added in each accurate titration. Make certain that any recorded results show the precision of your practical work.

https://xtremepape.rs/

For (b) From your titration results obtain a suitable value to be used in your calculation. Show Examiner's clearly how you have obtained this value. Use 25.0 cm³ of **FB 4** required cm³ of **FB 3**. [1] (c) (i) Calculate how many moles of HCl are contained in the volume recorded in (b). moles of HC*l* = mol (ii) Hence, calculate how many moles of NaOH are contained in 25.0 cm³ of **FB 4**. moles of NaOH = mol (iii) Calculate the concentration of the sodium hydroxide, FB 2. Ι Π III concentration of **FB 2** = mol dm⁻³ [3] [Total: 9]

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations. **No additional tests for ions present should be attempted.**

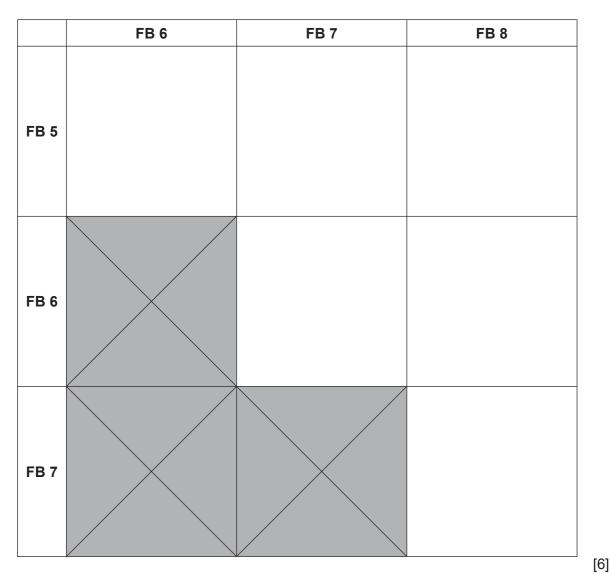
If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a) FB 5, FB 6, FB 7 and FB 8 are aqueous solutions each of which contains a single cation and a single anion. Some of the ions present are listed below.

	Fe ²⁺	Pb ²⁺	Zn ²⁺	I-	OH-	SO42-
--	------------------	------------------	------------------	----	-----	-------


By observing the reactions that occur when pairs of the solutions are mixed together, you will be able to identify which solution contains which of these ions.

For

Examiner's Use

For Examiner's Use

- To a 1 cm depth of **FB 6**, **FB 7** and **FB 8** in separate test-tubes add **FB 5** dropwise until in excess. Leave each test-tube to stand for a few minutes and note any changes.
- Use a 1 cm depth of each solution for the remaining tests.
- Record your observations in the following table.

V VI

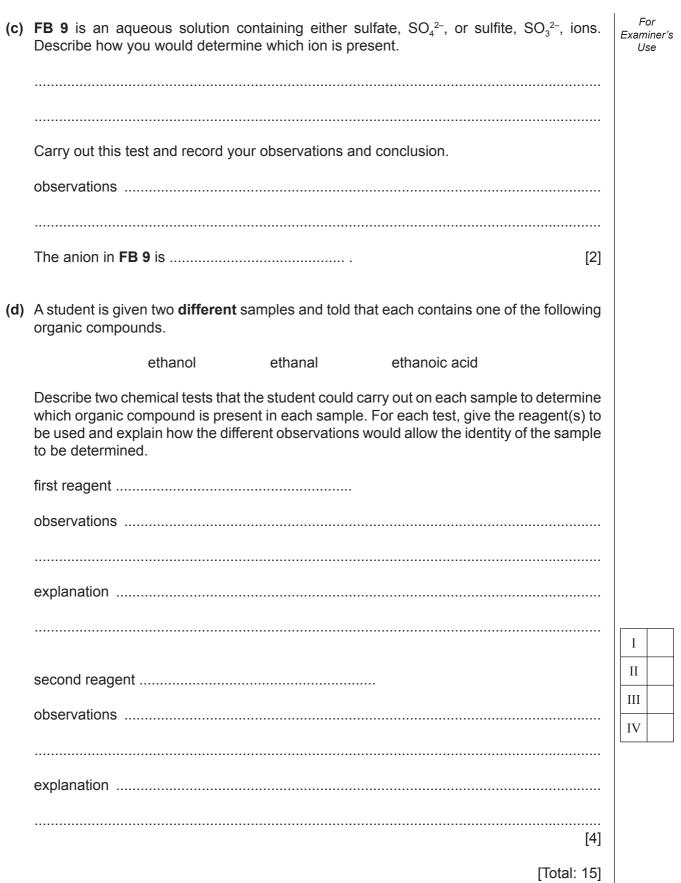
Ι

Π

III

Ι

Π


III

IV

(b) From your observations deduce which solution contains each of the following ions.

ion	Fe ²⁺	Pb ²⁺	Zn ²⁺	I-	OH⁻	SO4 ²⁻
solution						

[3]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

in a	reaction with					
ion	NaOH(aq)	NH ₃ (aq)				
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess				
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_				
barium, Ba²⁺(aq)	no ppt. (if reagents are pure)	no ppt.				
calcium, Ca²+(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.				
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess				
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution				
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess				
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess				
lead(II), Pb²⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess				
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess				
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess				
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess				

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ^{2–} (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$); gives white ppt. with Pb ²⁺ (aq)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil; NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with $Ba^{2+}(aq)$ or with $Pb^{2+}(aq)$ (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium dichromate(VI) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.